
Chapter 15

More Graphs—Eulerian, Bipartite,
and Colored

15.1 Eulerian graphs

Ever seen those puzzles that ask you to trace some shape without lifting the pencil off
the paper? For graph theory initiates such questions present no difficulty, separating
this select elite from the rest of the human race who are doomed to spend their Sunday
afternoons hunched over, putting page after page out of commission, searching in vain
for the ever-elusive drawing.

Given a graph G = (V, E), define a tour of G as a walk T = (v1, e1, v2, e2, . . . , vn, en, vn+1)
in G, such that T does not trace any edge more than once. (That is, ei 6= ej for all
1 ≤ i < j ≤ n.) The tour is said to be Eulerian if, in addition, vn+1 = v1, V (T ) = V ,
and E(T ) = E. Thus an Eulerian tour traverses all the edges of G, “walking along”
each exactly once, eventually coming back to where it started. (Particular vertices
may and generally will be visited more than once.) A graph is said to be Eulerian if
and only if it has an Eulerian tour.

Eulerian graphs were discussed by the great Leonhard Euler, the most prolific
mathematician of all time. Euler’s analysis of these graphs, presented in 1736, marks
the birth of graph theory.

Theorem 15.1.1. A graph is Eulerian if and only if it is connected and each of its
vertices has even degree.

Proof. We first prove that if G is Eulerian its vertices all have even degree. Indeed,
trace an Eulerian tour of G starting and ending at a vertex v. Every time the tour
enters an intermediate vertex it also leaves it along a different edge. In the very first
step the tour leaves v and in the last step it enters v. Thus we can label the edges
incident to any vertex as “entering” and “leaving”, such that there is a bijection
between these two sets. This shows that the degree of every vertex is even.

To prove that a graph G = (V, E) with all vertex degrees being even is Eulerian,
consider the longest tour T = (v1, e1, v2, e2, . . . , vn, en, vn+1) in G. (The length of a
tour is measured by its number of edges.) We prove below that T is Eulerian. Namely,
we prove that:
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(a) v1 = vn+1

(b) n = |E|

Proof of (a). Assume for the sake of contradiction that v1 6= vn+1. Then the number
of edges of T incident to v1 is odd. (After T first leaves v1, it enters and leaves
it an even number of times.) Since the degree of v1 in G is even, there is an
edge e of G that is incident to v1 but not part of T . We can extend T by this
edge, obtaining a contradiction.

Proof of (b). We can assume that v1 = vn+1. Suppose V (T ) 6= V . Consider a
vertex v ∈ V \ V (T ) and a vertex u ∈ V (T ). Since G is connected, there
is a path P between v and u in G. Consider the first time a vertex of T is
encountered along P ; this vertex is vi for some 1 ≤ i ≤ n. Let e′ = {v′, vi} be
the edge along which P arrives at vi and note that v′ 6∈ V (T ). This implies that
we can augment T by v′ and e′, and obtain a longer tour T ′, namely

T ′ = (v′, e′, vi, ei, . . . , vn, en, v1, e1, . . . , vi−1, ei−1, vi).

We have reached a contradiction and can therefore assume that V (T ) = V .
That is, T visits all the vertices of G. Assume for the sake of contradiction that
E(T ) 6= E, so there exists an edge e′ = {vi, vj} of G, for some 1 ≤ i < j ≤ n,
that is not part of T . Then we can augment T by the edge e′, and obtain a
longer tour T ′, namely

T ′ = (vi, e
′, vj, ej, vj+1, ej+1, . . . , vn, en, v1, e1, . . . , vi, ei, . . . , vj−1, ej−1, vj).

T ′ is longer than T by one edge, which is a contradiction that proves the theo-
rem.

Proof technique: Considering an extremal configuration. In the above proof
the crucial idea was to consider the longest tour in the graph. This is an instance of a
common proof technique: If we need to prove that some configuration with particular
properties exists (like an Eulerian tour), consider the extremal (longest, shortest, etc.)
configuration of a related type (usually one that has some but not all of the required
properties), and prove that this extremal configuration has to satisfy all of the required
properties. Some steps in the proof usually proceed by contradiction: If the extremal
configuration wasn’t of the required type we could find a “more extremal” one, which
is a contradiction.

15.2 Graph coloring

Consider a wireless company that needs to allocate a transmitter wavelength to each
of its users. Two users who are sufficiently close need to be assigned different wave-
lengths to prevent interference. How many different wavelengths do we need? Of
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course, we can just assign a new wavelength to every user, but that would be waste-
ful if some users are far apart. So what’s the least number of wavelengths we can get
away with?

We can model the users as vertices in a graph and connect two vertices by an edge
if the corresponding users are sufficiently close. A coloring of this graph G = (V, E)
is an assignment of colors to vertices, such that no two adjacent vertices get the same
color. The above question can now be restated as asking for the minimum number of
colors that are needed for a coloring of G.

Let us be a bit more precise in defining colorings: A k-coloring of G is said to
be a function c : V → {1, 2, . . . , k}, such that if {v, u} ∈ E then c(v) 6= c(u). The
smallest k ∈ N for which a k-coloring of G exists is called the chromatic number of
G. If a k-coloring of G exists, the graph is said to be k-colorable. There are many
deep results concerning colorings and the chromatic number. At this point we only
give the simplest one:

Proposition 15.2.1. If the degree of every vertex in a graph G is at most k, then
the chromatic number of G is at most k + 1.

Proof. By induction on the number of vertices in G. (The degree bound k is fixed
throughout the proof.) If G has a single vertex, then the maximal degree is 0 and
the graph is 1-colorable. Since 1 ≤ k +1, the proposition holds. Suppose every graph
with at most n vertices and all vertex degrees at most k is (k+1)-colorable. Consider
a particular graph G = (V, E) with n + 1 vertices, and all degrees at most k. Let
G′ be the graph obtained from G by deleting a particular vertex v and all the edges
incident to v. That is, G′ is the incident subgraph of G on the vertices V \ {v}. G′

has n vertices, all of degree at most k, and is thus (k + 1)-colorable. Let c′ be such a
coloring of G′. We extend it to a coloring c of G as follows. For every vertex u ∈ G
such that u 6= v we define c(u) = c′(u). The vertex v has at most k neighbors in G
and there is at least one color i among {1, 2, . . . , k + 1} that has not been assigned
to any of them. We define c(u) = i. This is a (k + 1)-coloring, and the proposition
follows.

15.3 Bipartite graphs and matchings

A bipartite graph is a graph that can be partitioned into two parts, such that edges
of the graph only go between the parts, but not inside them. Formally, a graph
G = (V, E) is said to be bipartite if and only if there exist U ⊆ V , such that

E ⊆ {{u, u′} : u ∈ U and u′ ∈ V \ U}.

The sets U and V \ U are called the classes of G. A complete bipartite graph Km,n is
a graph in which all the edges between the two classes are present. Namely, Km,n =
(V, E), where V = {1, 2, . . . ,m+n} and E = {{i, j} : 1 ≤ i ≤ m, m+1 ≤ j ≤ m+n}.
The number of edges in Kn is mn. From the definition of coloring, it follows that
a graph is bipartite if and only if it is 2-colorable. (Check!) Here is another useful
characterization of bipartite graphs:
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Proposition 15.3.1. A graph is bipartite if and only if it contains no cycle of odd
length.

Proof. For one direction of the claim, let G be a bipartite graph and let C =
(v1, v2, . . . , vn, v1) be a cycle in G. Suppose without loss of generality that v1 ∈ U ,
where U is as in the definition of bipartiteness. Then by simple induction that we
omit, vi ∈ U for every odd 1 ≤ i ≤ n. Since {vn, v1} ∈ E, vn ∈ V \ U and thus n is
even. It follows that the number of edges in C is even.

Before proving the other direction, we need a simple lemma.

Lemma 15.3.2. Given a graph G = (V, E), let P = (v1, v2, . . . , vn) be a shortest path
between two vertices v1 and vn in G. Then for all 1 ≤ i < j ≤ n, Pi = (vi, vi+1, . . . , vj)
is a shortest path between vi and vj.

Proof. Proof by contradiction. Let Qi = (vi, u1, u2, . . . , ul, vj) be a shortest path
between vi and vj. Assume for the sake of contradiction that Qi is shorter than Pi.
Consider the walk

Q = (v1, v2, . . . , vi, u1, u2, . . . , ul, vj, vj+1, . . . , vn).

Since Qi is shorter than Pi, Q is shorter than P . Now consider the graph G′ =
(V (Q), E(Q)). This graph is connected, and thus there is a shortest path P ′ between
v1 and vn in G′. The number of edges in this shortest path cannot exceed the total
number of edges in G′, and thus P ′ is shorter than P . Since P ′ is also a path between
v1 and vn in G, we have reached a contradiction.

We now turn to the other direction of the proposition. Assume that G = (V, E)
has no odd cycle. If G has more than one connected component we look at every
component separately. Clearly, if every component is bipartite, G as a whole is
bipartite. Thus assume that G is connected. Pick an arbitrary vertex v ∈ V and
define a set U ⊆ V as

U = {x ∈ V : the shortest paths from v to x have even length}.

Clearly, V \ U is the set

V \ U = {x ∈ V : the shortest paths from v to x have odd length}.

We prove that no two vertices in U are adjacent; the proof for V \ U is similar.
Consider for the sake of contradiction an edge e = {u, u′} ∈ E, such that u, u′ ∈ U .
Denote a shortest path from v to u by P1 and a shortest path from v to u′ by P2.
Given two vertices s and t on a path P , let P s,t be the part of P that connects s and
t. Consider a vertex w that lies on both P1 and P2. The above lemma implies that
P v,w

1 and P v,w
2 are shortest paths between v and w and thus have the same length,

which we denote by l(w). Consider the vertex w∗ shared by P1 and P2 that maximizes

l(w) among all such w. The paths Pw∗,u
1 and Pw∗,u′

2 share no vertex in common other
than w∗. Furthermore, the length of Pw∗,u

1 is the length of P1 minus l(w∗) and the

length of Pw∗,u′

2 is the length of P2 minus l(w∗). Since the lengths of P1 and P2 are
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both even, the lengths of Pw∗,u
1 and Pw∗,u′

2 have the same parity (that is, they are
either both even or both odd). Now consider the cycle C composed of Pw∗,u

1 , the edge

{u, u′}, and Pw∗,u′

2 . Since Pw∗,u
1 and Pw∗,u′

2 share no vertex in common other than

w∗, C really is a cycle in G. Moreover, since the lengths of Pw∗,u
1 and Pw∗,u′

2 have the
same parity, the number of edges in C is odd! We have reached a contradiction that
completes the proof.

Bipartite graphs are particularly useful to model symmetric relations from one
set to another. For example, given a collection of boys and girls, we could model the
relation “wants to go to the prom with” by a bipartite graph. Given such preferences,
an interesting question is whether we can pair the boys up with the girls, so that they
all end up going to the prom with someone they actually want to go with. It turns
out that this question has a very precise answer. To state the theorem we need to
define the notion of matching:

Definition 15.3.3. Given a bipartite graph G = (V, E), a matching B in G is a set
of disjoint edges. Namely, B ⊆ E and e1 ∩ e2 = ∅ for any e1, e2 ∈ B. A matching is
said to be perfect if

⋃
e∈B e = V .

Consider now a set B of boys, a set G of girls, and a symmetric relation P from B
to G. Define a graph W = (B ∪G, {{b, g} : (b, g) ∈ P}). The above question simply
asks to characterize when there exists a perfect matching in W . The below result,
known as Hall’s theorem, provides such a characterization. To state the theorem, we
use another piece of notation: Given a subset S of the vertices of W , we let Γ(S) be
the set of vertices of W adjacent to at least one of the vertices of S.

Theorem 15.3.4. A bipartite graph W = (V, E) with classes B and G has a perfect
matching if and only if |B| = |G| and |Γ(S)| ≥ |S| for all S ⊆ B.

Proof. One direction is easy: Assume W has a perfect matching and consider a
set S ⊆ B. Every element of S is matched to a distinct element of G and hence
|Γ(S)| ≥ |S|. In particular, |G| ≥ |B|. By a symmetric argument we get that
|B| ≥ |G| and thus |B| = |G|.

For the other direction, assume that |B| = |G| and that |Γ(S)| ≥ |S| for all
S ⊆ B. We prove that there exists a perfect matching in W by strong induction on
|B|. For the base case, if |B| = |G| = 1, the matching consists of the single edge of
W . Assuming that the claim holds for all graphs with |B| ≤ k, consider a graph W
as above with |B| = k + 1. We distinguish between two possibilities:

(a) If for every S ⊂ B, |Γ(S)| > |S|, we take an arbitrary x ∈ B and match it with
an adjacent y ∈ G. Then for every subset S ′ of B \ {x}, it still holds that the
number of vertices of G \ {y} adjacent to at least one of the vertices of S ′ is at
least |S ′|. We can thus match the vertices of B \{x} with the vertices of G\{y}
by the induction hypothesis.

(b) If for some S ⊂ B, |Γ(S)| = |S|, we note that for every S ′ ⊆ S, the number
of vertices in Γ(S) adjacent to at least one of the vertices of S ′ is at least |S ′|.
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Thus we can match S with Γ(S) by the induction hypothesis. Now we need to
show that we can match B \ S with G \ Γ(S). Consider a set S ′ ⊆ B \ S and
the set T ′ of its neighbors in G \ Γ(S). Note that the set of neighbors of S ∪ S ′

in G is Γ(S) ∪ T ′. Thus |S ∪ S ′| ≤ |Γ(S) ∪ T ′|. Since |S| = |Γ(S)|, we get that
|S ′| ≤ |T ′|. Thus by the induction hypothesis we can also match B \ S with
G \ Γ(S).

This shows that in both cases all the vertices of B can be matched with vertices of
G as required, and concludes the proof.
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